investigator_user investigator user funding collaborators pending menu bell message arrow_up arrow_down filter layers globe marker add arrow close download edit facebook info linkedin minus plus save share search sort twitter remove user-plus user-minus
  • Project leads
  • Collaborators

Development Of Genomics Based Personalized Cancer Immunotherapy

Robert D Schreiber

7 Collaborator(s)

Funding source

National Cancer Institute (NIH)
In 2012, we described one of the first uses of next-generation sequencing and bioinformatics approaches to rapidly and accurately identify a tumor-specific mutant protein that functioned as a major rejection antigen in a highly immunogenic (unedited), chemically induced mouse tumor line that was rejected when transplanted into naïve syngeneic wild type mice. Since publishing this work, we have generated compelling preliminary data leading us to form the hypothesis that the antigens in clinically apparent (edited) tumor cells that are recognized by CD8+ T cells stimulated during successful checkpoint blockade cancer immunotherapy may also be tumor-specific mutant proteins and that they too can be rapidly identified using our genomics approach. In this proposal, we wish to formally test this hypothesis to provide a foundation for the eventual translation of our method to human cancer patients so as to facilitate personalization of cancer immunotherapies. To achieve this goal we will pursue three specific aims. Specific Aim I: Identify Tumor-specific Mutational Antigens Eliciting CD8+ T Cell Responses to MCA Sarcomas and B16-F10 Melanoma With Differential Sensitivities to Checkpoint Blockade Therapy. Here we will focus our efforts on further validating and perhaps even improving our capacity to identify those antigens derived from tumor-specific mutant proteins that have potential therapeutic utility in cancer. We will ask whether tumor-specific mutant proteins are the favored targets of checkpoint blockade therapy and whether checkpoint blockade selects only the most antigenic of these mutations. Specific Aim II. Determine Whether Vaccines Targeting Tumor-Specific Mutational Antigens, Either Alone or in Combination with Checkpoint Blockade, Can Therapeutically Control Growth of MCA Sarcomas or B16-F10 Melanoma. Here we will explore whether the tumor-specific mutant antigens we identify in Aim I can be used as a basis for therapeutic tumor-specific cancer vaccines. We will investigate the following three questions: Can personalized vaccines: (a) be used instead of checkpoint blockade? (b) improve checkpoint blockade in sensitive tumors? (c) evoke checkpoint blockade effectiveness in insensitive tumors? Specific Aim III. Define the Characteristics of Tumor-specific CD8+ T Cells that Specify Their Therapeutic Effectiveness. These experiments will seek to define the characteristics of activated tumor antigen-specific CD8+ T cells that result in successful cancer immunotherapy. We want to test the hypothesis that CyTOF and RNA-Seq analyses will facilitate identification of tumor-specific CD8+ T cells expressing specific phenotypic markers that can predict a favorable clinical outcome.

Related projects