investigator_user investigator user funding collaborators pending menu bell message arrow_up arrow_down filter layers globe marker add arrow close download edit facebook info linkedin minus plus save share search sort twitter remove user-plus user-minus
  • Project leads
  • Collaborators

NAPTA: Optimizing clinical trial design & delivery of particle therapy for cancer

Mack Roach

17 Collaborator(s)

Funding source

National Cancer Institute (NIH)
More than half of all cancer patients receive definitive radiotherapy (RT), usually with x-rays. Particle beam radiation therapy (PBRT) with low linear energy transfer (LET) protons is increasingly being used based on the assumption they can reduce complications and improve local control. High-LET PBRT, e.g., with carbon ions, may provide additional physical dose distribution advantages over low-LET RT. In addition, carbon and neon may yield an increased level of effectiveness against radioresistant and hypoxic (poorly oxygenated) tumor cells, which represent the most RT- and chemotherapy-resistant aggressive tumor cells. Adult patients with advanced tumors of the lung, head and neck, brain, esophagus, and pancreas may especially benefit from the advantages of high-LET ions, but the studies conducted to date have not been definitive. To justify the development of an expensive PBRT facility with high-LET ions, definitive studies (i.e., randomized trials) are needed to prove that high-LET ion beam RT results in improved outcomes compared to treatment with low- LET protons or advanced x-ray based therapy such as intensity modulated radiation (IMRT) or stereotactic body radiotherapy (SBRT). The North American Particle Therapy Alliance (NAPTA) brings together experts in radiation oncology, medical and accelerator physics, magnet design, and radiobiology with international consultants from the existing ion beam facilities in Germany, Italy, and Japan. The main objective of NAPTA is to build a future for ion therapy in the U.S. by integrating and developing the required clinical, biological and technical expertise. In this initil two-year funding period, we will: 1) form a network of teams with a common vision for R&D and clinical studies involving PBRT; 2) enhance clinical PBRT research by developing the infrastructure for treating all patients within common protocols shared by all partner institutions 3) facilitate the development of new, low-cost, compact/efficient designs for ion accelerators, ion gantries, treatment planning systems, and imaging technology; and 4) facilitate the development of "new knowledge" in radiobiology related to PBRT, by integration of currently ongoing projects and startup of collaborations with access to existing facilities with protons and ions. PUBLIC HEALTH RELEVANCE: Our proposal addresses the important question of whether radiation therapy with ions such as carbon results in better outcomes in cancer therapy than protons or x-rays alone. This needs to be answered before very expensive ion beam technology becomes widely adopted. If the potential benefits due to biologic and dose distribution advantages are confirmed, ion beam therapy would be very cost effective. Our proposal offers the possibly least expensive strategy for answering this important health-related question.

Related projects