investigator_user investigator user funding collaborators pending menu bell message arrow_up arrow_down filter layers globe marker add arrow close download edit facebook info linkedin minus plus save share search sort twitter remove user-plus user-minus
  • Project leads
  • Collaborators

Structural Biology of XPB and XPD Helicases

John A Tainer

2 Collaborator(s)

Funding source

National Cancer Institute (NIH)
Hereditary mutations in the DNA helicases XPB and XPD lead to human diseases with different phenotypes reflecting increased cancers or aging: xeroderma pigmentosum (XP), XP combined with Cockayne syndrome (CS), and trichothiodystrophy (TTD). These diseases reflect the disruption of different cellular pathways: nucleotide-excision repair (NER), transcription-coupled repair (TCR), or transcription. In humans, XPB and XPD helicases are part of the ten subunit TFIIH transcription/repair complex, but disease-causing mutations cluster in XPB and particularly XPD rather than in the other TFIIH proteins, excepting TFB5, so these XP helicases appear key to controlling coordination of transcription and repair. We aim to understand the molecular features underlying the specificity, activity, conformational controls and pathway coordination by the XPB and XPD helicases. Our hypothesis is that well-defined architectures, conformational states, and molecular interfaces of XPB and XPD helicases provide critical controls for transcription, NER, and TCR. We have shown that characterizations of these features and their disruption by disease-causing mutations provide a molecular basis to directly connect the inherited gene mutations to disease phenotypes. Building on our crystal structures of XPB and XPD, we propose to integrate structural and biophysical experiments including small angle x-ray scattering to define conformations and complexes in solution with biochemical and biological experiments to determine structures of disease-relevant mutants, protein-DNA complexes, and define key interactions for their activities. The anticipated outcome of the proposed cross-disciplinary experiments is a molecular picture of the protein-DNA complexes, protein-protein interactions and functional states that orchestrate transcription and repair events mediated by XPB and XPD as components of TFIIH. These results will help provide a detailed molecular understanding of the processes that underlie the cancer and cell death disease phenotypes associated with XP, XP/CS, and TTD patient mutations.

Related projects