investigator_user investigator user funding collaborators pending menu bell message arrow_up arrow_down filter layers globe marker add arrow close download edit facebook info linkedin minus plus save share search sort twitter remove user-plus user-minus
  • Project leads
  • Collaborators

Protein Kinase Therapeutic Targets for Non-Small Cell Lung Carcinoma

Matthew L. Meyerson

0 Collaborator(s)

Funding source

National Institutes of Health (NIH)
This Program aims to develop three protein kinases, inhibitor-resistant EGFR, TBK1, and DDR2, as therapeutic targets in non-small cell lung cancer (NSCLC). These targets were chosen because patients are treated with mutation-selective therapy but typically develop resistance (EGFR), because the mutation is common and there is no effective targeted agent but we have an excellent candidate downstream target (TBK1 for mutant KRAS), or because there is a new genomic alteration providing an opportunity for a lung cancer histology, squamous cell carcinoma, for which there is no validated target (DDR2). Our program integrates molecular and cellular pharmacology, chemistry, structural biology and mouse modeling with the overarching aim of developing specific kinase inhibitors that are active in cell-based and genetically engineered mouse models, through the following specific aims. -Overall aim 1. Develop potent and where possible mutant-selective inhibitors of inhibitor-resistant EGFR, TBK1, and DDR2 using medicinal chemistry and structure-based drug design. Core A (Chemistry) has developed promising lead compounds to inhibit pyrimidine inhibitor-resistant EGFR (Project 1), TBK1 (Project 2), and DDR2 (Project 3). Each project will collaborate with Cores A (Chemistry) and B (Structure) to optimize compounds based on cellular screens and on structural analysis of purified kinases. -Overall aim 2. Characterize kinase inhibitors and their targets pharmacologically using cellular and animal therapeutic models of lung cancer. Investigators from each Project will work with Core C (Animal) to continue generating and studying genetically engineered mouse models of lung cancer relevant to each kinase. -Overall aim 3. Employ rational design and cell-based approaches to identify inhibitor resistance mutations and to use this information in kinase inhibitor design and optimization. Our insight into resistance to EGFR inhibitors will be used to design new inhibitors that overcome drug resistance mutations for all three targets.

Related projects