investigator_user investigator user funding collaborators pending menu bell message arrow_up arrow_down filter layers globe marker add arrow close download edit facebook info linkedin minus plus save share search sort twitter remove user-plus user-minus
  • Project leads
  • Collaborators

Genome Sequencing to identify novel genetic factors for breast cancer risk

Wei Zheng

1 Collaborator(s)

Funding source

National Cancer Institute (NIH)
Genetic factors play an important role in the etiology of both sporadic and familial breast cancer, a complex, multifactorial disease. Known genetic risk factors identified to date, including both rare high- penetrance genes and common low-penetrance variants, explain only about 28% of heritability for breast cancer. Recently emerged evidence strongly suggests that most of the heritable risk for breast cancer and other complex diseases may be due to a large number of low-frequency moderate-penetrance genes that are difficult to identify using conventional family-based linkage analyses and genome-wide association studies (GWAS). In this application, we propose a novel study to systematically search for the entire coding region in the human genome to identify new genetic susceptibility factors for breast cancer. This study will be built upon the resources we established in three NCI-funded large epidemiologic studies conducted among women in Shanghai, in which genomic DNA samples and comprehensive clinical and epidemiological data were collected from nearly 8,000 breast cancer cases and a large number of community controls. Specifically, we propose to sequence the whole exome for 600 genetically-enriched breast cancer cases and 600 controls (Stage 1). Using data from Stage 1 and those from the 1000 Genomes Project, we will select approximately 350 promising genes for replication through variant genotyping (Stage 2) in an independent set of cases and controls. Approximately 20 genes will be selected for Stage 3 replication from those that show promising association in Stage 2 but require additional evaluation to either confirm or reject the hypotheses. To our knowledge, this is the first large association study for breast cancer using whole exome sequencing. With strong methodology and the use of novel technology and study design, the proposed study will identify novel genes and pathways that will significantly improve our understanding of breast cancer genetics and biology. Newly identified genes, particularly those with a substantial effect size, could serve as targets for novel cancer treatment and be used for cancer screening and risk assessment.

Related projects